Conjunctival pallor |
You can always interpret any likelihood this way, but they're calculated differently depending on whether you're interested in the presence or absence of the finding. The LR for the presence of a finding (or "+ve LR") is calculated as the true positive rate divided by the false positive rate, which is equivalent to he sensitivity divided by the complement of the specificity. The LR for the absence of a finding ("-ve LR") is calculated as the false negative rate divided by the true negative rate, which is equivalent to the complement of the sensitivity divided by the specificity.
Likelihood ratios, like sensitivity, specificity, and PPV/NPV are diagnostic weights; they give you some sense of how seriously you should take a particular test or physical exam finding. For instance, if you know that most methods of clinically determining hepatogmegaly have positive LRs of between 1 and 2, you might not rely on these methods to diagnose this condition. Likelihood ratios are particularly useful if you happen to know, or have a reasonably good way to guess the pre-test odds of the condition you're looking for (i.e., it's prevalence in your patient population,) because they can be used to translate pre-test odds directly into post-test odds. The calculation isn't simple, and it's easiest to use a nomogram like this one, (which was developed by David Sackett):
It's extremely simple to use. You just draw a straight line through the pre-test probability of your condition and the likelihood ratio associated with a positive test result, and it will intersect the post-test probability on the right-hand axis. Thus, if you happen to know that the prevalence of pneumonia among otherwise healthy outpatients is 1%, and that a egophony has a likelihood ratio of 4.1 for bacterial pneumonia, then the probability that an otherwise healthy person with egophony has pneumonia is 5%.
This highlights that the value of an LR depends on the pre-test probability of the condition it's used to diagnose. If the probability is very low, only very high LRs will raise post-test probability by much; if it's very high, then a relatively modest LR may change post-test probability significantly.
We always find that reading multiple explanations of the same concept helps it stick better, so if you're interested in a concise and well-written explanation of LRs you should check this one out on the website of the Center for Evidence-Based Medicine. Most of the LRs used in this post are taken from Steven McGee's majesterial Evidence Based Physical Diagnosis, which we highly recommend if you're looking for a way to spend your book money.
No comments:
Post a Comment